Short Research Article

Synthesis of [5-³H]uracil nucleoside analogue[†]

CRISTIAN POSTOLACHE^{1,*}, CONSTANTIN TANASE², LIDIA MATEI¹ and VIOLETA SERBAN¹

¹'Horia Hulubei' National Institute for Physics and Nuclear Engineering 407 Atomistilor, Magurele, Bucharest 007125, Romania ²National Institute of Chemical and Pharmaceutical Researches, Bucharest, Romania

Received 12 July 2006; Revised 26 January 2007; Accepted 13 February 2007

Keywords: tritium; labelled compounds; nucleoside analogues; antitumoral; antiviral

Introduction

The development of new drugs with antitumoral and antiviral activity that exhibit greater efficacy, more favourable toxicity profile, and are less susceptible to cross-resistance is an important goal. We are exploring the synthesis of new biologically active nucleoside analogues, modified at the base or more frequently at the sugar moiety.

Uracil oxabicyclo3.3.0octanic derivative **3a**, was obtained using the Vorbruggen method (with trimethylsilyl trifluoromethanesulphonate as catalyst) starting from acetylated lactole **1** (easily obtained by acetylation of lactole **1**) (Scheme 1) and silylated uracil.^{1,2} The new nucleoside was tested with good results for its biological activity (toxicity).

Scheme 1

Scheme 2

Scheme 3

Results and discussion

5-Iodouracil oxabicyclo3.3.0octanic compound **3b**, was obtained similarly with 60.9% yield using the Vorbruggen method silylated 5-iodouracil (Scheme 2) as reagent.

^{*}Correspondence to: Cristian Postolache, 'Horia Hulubei' National Institute for Physics and Nuclear Engineering 407 Atomistilor, Magurele, Bucharest 007125, Romania. E-mail: cristip@nipne.ro [†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

610 C. POSTOLACHE ET AL.

Table 1 Characteristics of [5- ³ H] uracil nucleoside anal	ogue
---	------

.2
.018

The structure of iodinated compound was determined by FT IR and 1H-NMR spectrometry.

Tritiated and deuterated compounds **4** in position 5 were synthesized by catalytic hydrogenations³ of 5-iodouracil nucleoside analogue **3b** (Scheme 3).

The $[5^{-2}H]$ and $[5^{-3}H]$ uracil nucleoside analogue was purified by TLC. The labelled compound was characterized by determination of: radioactive concentration, chemical concentration; and radiochemical purity. Obtained results are presented in Table 1. Deuterated compound was characterized by FTIR ATR and $^1\mathrm{H}$ NMR.

REFERENCES

- 1. Vorbruggen H, Hoefle G. Chem Ber 1981; **114**: 1256–1268.
- Vorbruggen H, Krolikiewicz K, Bennua B. Chem Ber 1981; 114: 1234–1255.
- 3. Evans EA. *Tritium and its Compounds* (2nd edn). Butterworths: London, 1974.